Finitely WellPositioned Sets
نویسندگان
چکیده
We introduce and study nitely well-positioned sets, a class of asymptotically narrowsets that generalize the well-positioned sets recently investigated by Adly, Ernst and Thera [1] and [3], as well as the plastering property of Krasnoselskii [11].
منابع مشابه
Separated finitely supported $Cb$-sets
The monoid $Cb$ of name substitutions and the notion of finitely supported $Cb$-sets introduced by Pitts as a generalization of nominal sets. A simple finitely supported $Cb$-set is a one point extension of a cyclic nominal set. The support map of a simple finitely supported $Cb$-set is an injective map. Also, for every two distinct elements of a simple finitely supported $Cb$-set, there exists...
متن کاملWell-positioned Closed Convex Sets and Well-positioned Closed Convex Functions
Closed convex sets for which the barrier cone has a nonempty interior, as well as proper extended-values real functionals for which the domain of their Fenchel conjugate is nonempty, are mathematical objects currently encountered in various areas of optimization theory and variational analysis (see for instance the class of well-behaved functions introduced by Auslender and Crouzeix in [5]). Th...
متن کاملDening Finitely Supported Mathematics over Sets with Atoms
This paper presents some steps of defining a finitely supported mathematics by using sets with atoms. Such a mathematics generalizes the classical Zermelo-Fraenkel mathematics, and represents an appropriate framework to work with (infinite) structures in terms of finitely supported objects. We focus on the techniques of translating the Zermelo-Fraenkel results to this finitely supported mathema...
متن کاملMatching Theorems for Systems of a Finitely Generated Coxeter Group
The isomorphism problem for finitely generated Coxeter groups is the problem of deciding if two finite Coxeter matrices define isomorphic Coxeter groups. Coxeter [3] solved this problem for finite irreducible Coxeter groups. Recently there has been considerable interest and activity on the isomorphism problem for arbitrary finitely generated Coxeter groups. For a recent survey, see Mühlherr [10...
متن کاملWhich Finitely Generated Abelian Groups Admit Equal Growth Functions?
We show that finitely generated Abelian groups admit equal growth functions with respect to symmetric generating sets if and only if they have the same rank and the torsion parts have the same parity. In contrast, finitely generated Abelian groups admit equal growth functions with respect to monoid generating sets if and only if they have same rank. Moreover, we show that the size of the torsio...
متن کامل